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Chapter 13: Binary and Mixed-Integer Programming 

The general branch and bound approach described in the previous chapter can be customized for 
special situations.  This chapter addresses two special situations: 

• when all of the variables are binary (known as “Binary Integer Programming” or BIP), 

• when some or all of the variables are integer-valued and the objective function and all of 
the constraints are linear (known as “Mixed Integer Programming”, MIP, or “Mixed 
Integer Linear Programming”, MILP). 

Binary Integer Programming 

In binary problems, each variable can only take on the value of 0 or 1.  This may represent the 
selection or rejection of an option, the turning on or off of switches, a yes/no answer, or many 
other situations.  We will study a specialized branch and bound algorithm for solving BIPS, 
known as Balas Additive Algorithm.  It requires that the problem be put into a standard form: 

• The objective function has the form ∑ =
= n

j jjxc
1

  Zminimize  

• The m constraints are all inequalities of the form ∑ =≥ mibxa ijij 1,2,...  for   

• All of the xj where j=1,2,…n are binary variables (can only have a value of 0 or 1). 

• All objective function coefficients are non-negative. 

• The variables are ordered according to their objective function coefficients so that  
0 = c1 = c2 =…= cn. 

This may seem like a restrictive set of conditions, but many problems are easy to convert to this 
form.  For example, negative objective function coefficients are handled by a change of variables 
in which x j is replaced by (1-xj’).  It is also easy to reorder the variables.  Constraint right hand 
sides can be negative, so ≤ constraints are easily converted to ≥ form by multiplying through by  
-1.  The biggest restriction is that Balas Additive Algorithm does not handle equality constraints. 

The keys to how Balas Algorithm works lies in its special structure: 

• The objective function sense is minimization, and all of the coefficients are nonnegative, 
so we would prefer to set all of the variables to zero to give the smallest value of Z. 

• If we cannot set all of the variables to 0 without violating one or more constraints, then 
we prefer to set the variable that has the smallest index to 1.  This is because the variables 
are ordered so that those earlier in the list increase Z by the smallest amount. 

These features also affect the rest of the branch and bound procedures.  Branching is simple: 
each variable can only take on one of two values: 0 or 1.  Bounding is the interesting part.  Balas 
algorithm does not perform any kind of look-ahead to try to complete the solution or a simplified 
version of it.  Instead the bounding function just looks at the cost of the next cheapest solution 
that might provide a feasible solution.  There are two cases, as described next. 
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If the current variable is set to 1, i.e. xN = 1, then the algorithm assumes that this might provide a 

feasible solution, so the value of the bound is ∑ =

N

j jj xc
1

.  Because of the variable ordering, this is 

the cheapest thing that can happen.  Note that xN (“x now”) is not the same as xn (the last x in the 
list). 

If the current variable is set to 0, i.e. xN = 0, then things are a little different.  Recall that we need 
to calculate a bounding function value only for nodes that are currently infeasible.  In this case, 
one of the ≥ constraints is not yet satisfied, i.e. the left hand side is less than the right hand 
constant.  But if we set the current variable to zero, the left hand side value of the violated 
constraint(s) will not change.  Therefore we must set at least one more variable to 1, and the 

cheapest one available is xN+1, so the bounding function value is 11 +=
+∑ N

N

j jj cxc .  As before, the 

algorithm assumes that this cheapest setting might provide a feasible solution, so it proceeds. 

It is easy to determine whether the solution proposed by the bounding function is feasible: just 
assume that all of the variables past xN (when xN = 1) or past xN+1 (when xN = 0) take on the value 
of zero and check all of the constraints.  If all of the constraints are satisfied at the solution 
proposed by the bounding function, then the node is fathomed, since it is not possible to get a 
lower value of the objective function at any node that descends from this one (the bounding 
function has made sure of that).  All that remains is to compare the solution value at the node to 
the value of the incumbent, and to replace the incumbent if the current node has a lower value. 

Infeasibility fathoming is also worthwhile in this algorithm since it is easy to determine when a 
bud node can never develop into a feasible solution, no matter how the remaining variables are 
set.  This is done by examining each constraint one by one.  For each constraint, calculate the 
largest possible left hand side value, given the decisions made so far, as follows: (left hand side 
value for variables set so far) + (maximum left hand side value for variables not yet set).  The 
second term is obtained by assuming that a variable will be set to 0 if its coefficient is negative 
and 1 if its coefficient is positive.  If the largest possible left hand side value is still less than the 
right hand side constant, then the constraint can never be satisfied, no matter how the remaining 
variables are set, so this node can be eliminated as “impossible”.  For example, consider the 
constraint -4x1 - 5x2 + 2x3 + 2x4 – 3x5 ≥ 1.  Suppose that both x1 and x2 have already been set to 1, 
while the remaining variables have not yet been set.  The largest possible left hand side results if 
x3 and x4 are set to 1 while x5 is set to 0, giving a left hand side value of (-9) + (4) = -5, which is 
not ≥ 1, hence the partial solution (1,1,?,?,?) cannot ever yield a feasible solution, so the node is 
fathomed as “impossible”. 

Balas Additive Algorithm uses depth-first node selection.  It is of course possible to replace this 
by another by another node selection strategy, such as best-first, but if you do so then you are no 
longer following Balas’ algorithm, strictly speaking.  If your problem formulation states that you 
are using the Balas algorithm, then you must use depth-first node selection. 

Consider the following example: 

 Minimize Z = 3x1 + 5x2 + 6x3 + 9x4 + 10x5 + 10x6  

 Subject to: (1) -2x1 + 6x2 – 3x3 + 4x4 + x5 – 2x6 ≥ 2 
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(2) -5x1 – 3x2 + x3 + 3x4 – 2x5 + x6 ≥ -2 

(3) 5x1 – x2 + 4x3 – 2x4 + 2x5 – x6 ≥ 3 

and xj binary for j=1,2…6 

Note that the variables are already ordered as required by Balas’ algorithm.  There are 26 = 64 
possible solutions if they are all enumerated, but we expect that Balas’ algorithm will generate 
far fewer full and partial solutions.  The branch and bound tree develops as shown in the 
following diagrams.  Figure 1 shows the root node, which has an objective function value of 0 
and is infeasible by constraints 1 and 3, hence it must be expanded.  From here on, each node is 
labelled with the bounding function value, and an indication of status for the current solution that 
the node represents (note that this is not the same as the bounding function solution for zero 
nodes).  “Inf” indicates that the node is currently infeasible and “Imp” indicates that the node has 
been fathomed and found to be impossible to satisfy; each of these notations is followed by an 
indication of which constraints are causing infeasibility or impossibility. 

Figure 2 shows the branching on x1, the first variable.  Notice that if x1 is set to 1, then the 
bounding function assumes that we will not have to set 

any more variables 
to 1, hence the 
bounding function 
value is 3, since c1 = 
3.  However, if x1 is 
set to 0, then at least 
one more variable 

must be set to 1, and the bounding function assumes 
that the cheapest variable, x2, the next variable in the 
ordered list, is the one that will be set to 1, hence the 
bounding function value is 5 because c2 = 5.  The bounding function does not yield a feasible 
solution at either node. 

There are still live bud nodes on the developing branch and bound tree, so we choose the next 
node to expand, via the depth-first rule.  
Here we have just the two nodes to choose 
from, and since this is a minimization 
problem, we choose the node having the 
smallest value of the bounding function, and 
expand it using the next variable in the list, 
x2.  This is shown in Figure 3.  Note that 
node (1,1,?,?,?,?) is impossible by constraint 
2.  Once x1 and x2 are set to 1, no matter 
how the remaining variables are set, the left 
hand side will never be greater than -2 

Now we select the next node for expansion.  
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Figure 1: Root node. 
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Since we are using depth-first node selection, we are left only a single bud node to choose: 
(1,0,?,?,?,?), with a bounding function value of 9.  Best-first node selection would have chosen 
node (0,?,?,?,?,?) because it has a lower bounding function value of 5.   

The expansion of node (1,0,?,?,?,?) is shown in Figure 4.  Node (1,0,0,?,?,?) is fathomed and 
found to be feasible when using the bounding function solution (1,0,0,1,0,0), with an objective 
function value of 12.  This is our first incumbent solution.  Node (1,0,1,?,?,?) is found to be 
impossible by constraint 1. 

At this point, both of the 
nodes just created are not 
eligible for further 
expansion, so we back up 
the tree, looking for a level 
at which one of the nodes is 
unexplored.  Figure 5 
shows that the next 
branching occurs at the 
node (0,?,?,?,?,?). 

Both child nodes are 
infeasible, but not 
impossible.  The node 

having the lowest 
bounding function 
value is chosen for 
further branching, 
as shown in Figure 
6. 

The new zero node 
created has a 
bounding function 
value of 14, worse 
than the incumbent, 
so it is pruned 

immediately, 
without bothering to 
check feasibility or 
impossibility.  The 
new one node is 
feasible, and the 

associated solution (0,1,1,0,0,0) has an objective function value of 11.  This is lower than the 
previous incumbent, so it becomes the new incumbent, and the node associated with the previous 
incumbent is pruned.  There is still a live node that has a promising value of the bounding 
function: (0,0,?,?,?,?), so this node is expanded next, as shown in Figure 7. 
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Figure 4: Third branching. 
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There is again just one 
node to expand: 
(0,0,1,?,?,?), as shown 
in Figure 8.  Both child 
nodes have bounding 
function values that are 
worse than the 
objective function 
value of the incumbent, 
and so are pruned.  

There are no more bud 
nodes, so the branch 
and bound solution is 
complete and the 
incumbent solution is 
the optimum: 
(0,1,1,0,0,0) with an 
objective function 
value of 11. 
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Note that we examined 
15 nodes in total, 
including the root node.  
So we did 15/64 = 23% 
of the work as 
compared to a full 
enumeration.  This is a 
good reduction of 
effort, but we should 
expect to see much 
more dramatic speed-
ups on larger problems 
where early pruning 
cuts off branch that 
could have had 
numerous descendants. 

Balas algorithm is just one way of dealing with binary problems.  More general methods can also 
be used, such as the techniques for mixed-integer programming that we will explore next. 

Mixed-Integer Linear Programming 

A mixed-integer programming (MIP) problem results when some of the variables in your model 
are real-valued (can take on fractional values) and some of the variables are integer-valued.  The 
model is therefore “mixed”.  When the objective function and constraints are all linear in form, 
then it is a mixed-integer linear program (MILP).  In common parlance, MIP is often taken to 
mean MILP, though mixed-integer nonlinear programs (MINLP) also occur, and are much 
harder to solve.  As you will see later, MILP techniques are effective not only for mixed 
problems, but also for pure-integer problems, pure-binary problems, or in fact any combination 
of real-, integer-, and binary-valued variables. 

Mixed-integer programs often arise in the context of what would otherwise seem to be a linear 
program.  However, as we saw in the previous chapter, it simply doesn’t work to treat the integer 
variable as real, solve the LP, then round the integer variable to the nearest integer value.  Let’s 
take a look at how integer variables arise in an LP context. 

Either/Or Constraints 

Either/or constraints arise when we have a choice between two constraints, only one of which 
has to hold.  For example, the metal finishing machine production limit in the Acme Bicycle 
Company linear programming model is x1 + x2 ≤ 4.  Suppose we have a choice between using 
that original metal finishing machine, or a second one that has the associated constraint x1 + 1.5x2 
≤ 6.  We can use either the original machine or the second one, but not both.  How do we model 
this situation? 

An important clue lies in observing what happens if you add a large positive number (call it M) 
to the right hand side of a ≤ constraint, e.g. x1 + x2 ≤ 4 + M.  This now says x1 + x2 ≤ “very big 
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number”, so any values of x1 and x2 will satisfy this constraint.  In other words, the constraint is 
eliminated.  So what we want in our either/or example is the following: 

x1  + x2 ≤ 4 ← only this constraint holds either 
x1 + 1.5x2 ≤ 6 + M  
x1  + x2 ≤ 4 + M  or 
x1 + 1.5x2 ≤ 6 ← only this constraint holds 

We can achieve an equivalent effect by introducing a single binary variable (call it y), and using 
it in two constraints, both of which are included in the model, as follows: 

(1) x1  + x2  ≤ 4 + My 

(2) x1 + 1.5x2 ≤ 6 + M(1-y) 

Now if y = 0 then only constraint (1) holds, and if y = 1 then only constraint (2) holds, exactly 
the kind of either/or behaviour we wanted.  The downside, of course, is that a linear program has 
been converted to a mixed-integer program that is harder to solve. 

k out of N Constraints Must Hold 

This is a generalization of the either/or situation described above.  For example, we may want 
any 3 out of 5 constraints to hold.  This is handled by introducing N binary variables, y1...yN, one 
for each constraint, as follows: 

f1(x) ≤ b1 + My1  

… 

fN(x) ≤ bN + MyN  

and including the following additional constraint: 

  kNy
N

i i −=∑ =1
 

This final constraint works as follows: since we want k constraints to hold, there must be N-k 
constraints that don’t hold, so this constraints insures that N-k of the binary variables take the 
value 1 so that associated M values are turned on, thereby eliminating the constraint. 

Functions Having N Discrete Values 

Sometimes you have a resource that is available in only certain discrete sizes.  For example, the 
metal finishing machine may have 3 settings: x1 + x2 ≤ 4 or 6 or 8.  This can be handled by 
introducing one binary variable for each of the right hand side values.  Where there are N 
discrete right hand sides, the model becomes: 

  ∑ =
=

N

i ii ybf
1

)( x  and ∑ =
=

N

i iy
1

1  

This assures that exactly one of the right hand side values is chosen.  In the metal finishing 
machine example, the model would be:  
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x1 + x2 ≤ 4y1 + 6y2 + 8y3  

y1 + y2 + y3 =1 

and y1, y2, y3 binary. 

Fixed Charges and Set-up Costs 

Fixed charges or set-up costs are incurred when there is some kind of fixed initial cost associated 
with the use of any amount of a variable, even a tiny amount.  For example, if you wish to use 
any amount at all of a new type of metal finishing for the ABC Company, then you incur a one-
time set-up cost for buying and installing the required new equipment.  Fixed charges and set-up 
costs occur frequently in practice, so it is important to be able to model them. 

Mathematically speaking, a set-up charge is modelled as follows: 

0 if xj = 0 f(xj) =  K + cjx j if x j > 0 

where K is the fixed charge.  This says that there are no charges at all if the resource represented 
by xj is not used, but if it is used, then we incur both the fixed charge K and the usual charges 
associated with the use of x j, represented by c jxj. 

The objective function must also be modified.  It becomes: 

  minimize Z = f(xj) + (rest of objective function) 

Note the minimization: set-up costs are only interesting in the cost-minimization context.  If it is 
cost-maximization (a strange concept…) then we would of course always incur the set-up cost by 
insuring that every resource was always used. 

The final model introduces a binary variable y that determines whether or not the set-up charge is 
incurred: 

Minimize Z = [Ky + c jx j] + (rest of objective function) 

subject to: xj – My ≤ 0 
  other constraints 
  y binary 

This behaves as follows.  If xj ≥ 0, then the first constraint insures that y = 1, so that the fixed 
charge in the objective function is properly applied.  However, if xj = 0, then y could be 0 or 1: 
the first constraint is not restrictive enough in this sense.  We want y to be zero in this case so 
that the set-up cost is not unfairly applied, and something in the model actually does influence y 
to be zero.  Can you see what it is?  It is the minimization objective.  Given the free choice in this 
case between incurring a set-up cost or not, the minimization objective will obviously choose not 
to.  Hence we have exactly the behaviour that we wish to model.  Once again, though, we have 
converted a linear program to a mixed-integer linear program. 
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Dakin’s Algorithm for Solving Mixed-Integer Linear Programs 

Now that we’ve seen how integer or binary variables can enter linear programs, we need a 
method for solving the resulting mixed-integer problems.  Because of the integer or binary 
variables, we will need to use some kind of branch and bound approach.  Dakin’s algorithm is a 
branch and bound method that uses an interesting bounding function: it simply ignores the 
integer restrictions and solves the model as though all of the variables were real-valued!  This 
LP-relaxation provides an excellent bound on the best objective function value obtainable, and 
sometimes results in a feasible solution when all of the integer variables actually get integer 
values in the LP solution. 

The second aspect of Dakin’s algorithm is the branching.  As a node is expanded, two child 
nodes are created in which new variable bounds are added to the problem.  We first identify the 
candidate variables: those integer variables that did not get integer values in the LP-relaxation 
solution associated with the node.  One of these candidate variables is chosen for branching.  
Let’s consider candidate variable xj that has a non-integer value between the next smaller integer 
k and the next larger integer k+1.  The branching then creates two child nodes: 

• the parent node LP plus the new variable bound x j ≤ k 
• the parent node LP plus the new variable bound x j ≥ k+1 

For example, consider some candidate variable xj that has the value 5.761.  One child node will 
consist of the parent LP plus the new variable bound xj ≤ 5 and the other child node will consist 
of the parent LP plus the new variable bound xj ≥ 6.  These new nodes force xj away from its 
current non-integer value.  There is no guarantee that it will get an integer value in the next LP-
relaxation, however.   

Fathoming is simple.  If the LP-relaxation at a node assigns integer values to all integer 
variables, then the solution is feasible, and is the best that can be attained by further expansion of 
that node.  The solution value is then compared to the incumbent and replaces the incumbent if it 
is better.  If the LP-relaxation is infeasible, then the node and all of its descendents are infeasible, 
and it can be pruned. 

Node selection is normally depth-first.  This is because a child node is exactly the same as the 
parent node, except for one changed variable bound.  This means that the LP basis from the 
parent node LP-relaxation solution can be used as a hot start for the child node LP-relaxation.  Of 
course the parent node solution will definitely be infeasible in the child node, but a dual simplex 
restart can be used and will very quickly iterate to a new optimum solution.  This is much more 
efficient than, say, best-first node selection, which would require restarting LPs from scratch at 
most iterations. 

Let’s look at a small example that appears in a textbook by Winston (Mathematical 
Programming, 1991, p. 489): 

Maximize Z = 8x1 + 5x2  
s.t. x1 + x2 ≤ 6 
 9x1 + 5x2 ≤ 45 
 x1, x2 are integer and nonnegative. 
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A graph of this problem is shown in Figure 9.  The initial 
LP relaxation is created when the original model, shown 
above, is simply treated as an LP and solved.  The LP-
optimum occurs at (3.75,2.25) with Z = 41.25.  However 
this is not integer-optimum since both integer variables 
have taken on fractional values, so we must develop a 
branch and bound tree following Dakin’s algorithm. 

This branch and bound tree develops as shown in Figure 
10.  Small sketches of the feasible region for some of the 
LP-relaxations are also shown on the diagram.  Note how 
the new variable bounds gradually “square off” the LP-
relaxation feasible regions until solutions are found in 
which both of the integer variables indeed have integer 
values. 

Each node in Figure 10 represents the solution of an LP-
relaxation.  The order of the solutions is given by the 

circled numbers.  An incumbent solution of (3,3) with Z = 39 is obtained early, at the second LP 
solution.  However there are other promising nodes with better bounding function values, so the 
tree development continues.  A better incumbent is eventually found: node 7 with a solution of 
(5,0) and Z = 40.  At this point, all other nodes are pruned and the solution process halts.  Note 
how far the final solution of (5,0) is from the initial LP-relaxation solution of (3.75,2.25): you 
can’t get to the final solution by rounding! 

You will not need to set up the MILP branch and bound tree manually in practice.  Most 
commercial LP solvers will accept integer or binary restrictions on variables as part of their 
input.  They then take care of setting up the branch and bound tree automatically.  As you can 
imagine though, MILP solutions generally take a lot longer than identical LP solutions! 
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Figure 9: Initial LP relaxation. 
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Figure 10: Branch and bound tree for Dakin's algorithm. 

 


