
Practical Optimization: a Gentle Introduction John W. Chinneck, 2004
http://www.sce.carleton.ca/faculty/chinneck/po.html

1

Chapter 13: Binary and Mixed-Integer Programming

The general branch and bound approach described in the previous chapter can be customized for
special situations. This chapter addresses two special situations:

• when all of the variables are binary (known as “Binary Integer Programming” or BIP),

• when some or all of the variables are integer-valued and the objective function and all of
the constraints are linear (known as “Mixed Integer Programming”, MIP, or “Mixed
Integer Linear Programming”, MILP).

Binary Integer Programming

In binary problems, each variable can only take on the value of 0 or 1. This may represent the
selection or rejection of an option, the turning on or off of switches, a yes/no answer, or many
other situations. We will study a specialized branch and bound algorithm for solving BIPS,
known as Balas Additive Algorithm. It requires that the problem be put into a standard form:

• The objective function has the form ∑ =
= n

j jjxc
1

 Zminimize

• The m constraints are all inequalities of the form ∑ =≥ mibxa ijij 1,2,... for

• All of the xj where j=1,2,…n are binary variables (can only have a value of 0 or 1).

• All objective function coefficients are non-negative.

• The variables are ordered according to their objective function coefficients so that
0 = c1 = c2 =…= cn.

This may seem like a restrictive set of conditions, but many problems are easy to convert to this
form. For example, negative objective function coefficients are handled by a change of variables
in which x j is replaced by (1-xj’). It is also easy to reorder the variables. Constraint right hand
sides can be negative, so ≤ constraints are easily converted to ≥ form by multiplying through by
-1. The biggest restriction is that Balas Additive Algorithm does not handle equality constraints.

The keys to how Balas Algorithm works lies in its special structure:

• The objective function sense is minimization, and all of the coefficients are nonnegative,
so we would prefer to set all of the variables to zero to give the smallest value of Z.

• If we cannot set all of the variables to 0 without violating one or more constraints, then
we prefer to set the variable that has the smallest index to 1. This is because the variables
are ordered so that those earlier in the list increase Z by the smallest amount.

These features also affect the rest of the branch and bound procedures. Branching is simple:
each variable can only take on one of two values: 0 or 1. Bounding is the interesting part. Balas
algorithm does not perform any kind of look-ahead to try to complete the solution or a simplified
version of it. Instead the bounding function just looks at the cost of the next cheapest solution
that might provide a feasible solution. There are two cases, as described next.

Practical Optimization: a Gentle Introduction John W. Chinneck, 2004
http://www.sce.carleton.ca/faculty/chinneck/po.html

2

If the current variable is set to 1, i.e. xN = 1, then the algorithm assumes that this might provide a

feasible solution, so the value of the bound is ∑ =

N

j jj xc
1

. Because of the variable ordering, this is

the cheapest thing that can happen. Note that xN (“x now”) is not the same as xn (the last x in the
list).

If the current variable is set to 0, i.e. xN = 0, then things are a little different. Recall that we need
to calculate a bounding function value only for nodes that are currently infeasible. In this case,
one of the ≥ constraints is not yet satisfied, i.e. the left hand side is less than the right hand
constant. But if we set the current variable to zero, the left hand side value of the violated
constraint(s) will not change. Therefore we must set at least one more variable to 1, and the

cheapest one available is xN+1, so the bounding function value is 11 +=
+∑ N

N

j jj cxc . As before, the

algorithm assumes that this cheapest setting might provide a feasible solution, so it proceeds.

It is easy to determine whether the solution proposed by the bounding function is feasible: just
assume that all of the variables past xN (when xN = 1) or past xN+1 (when xN = 0) take on the value
of zero and check all of the constraints. If all of the constraints are satisfied at the solution
proposed by the bounding function, then the node is fathomed, since it is not possible to get a
lower value of the objective function at any node that descends from this one (the bounding
function has made sure of that). All that remains is to compare the solution value at the node to
the value of the incumbent, and to replace the incumbent if the current node has a lower value.

Infeasibility fathoming is also worthwhile in this algorithm since it is easy to determine when a
bud node can never develop into a feasible solution, no matter how the remaining variables are
set. This is done by examining each constraint one by one. For each constraint, calculate the
largest possible left hand side value, given the decisions made so far, as follows: (left hand side
value for variables set so far) + (maximum left hand side value for variables not yet set). The
second term is obtained by assuming that a variable will be set to 0 if its coefficient is negative
and 1 if its coefficient is positive. If the largest possible left hand side value is still less than the
right hand side constant, then the constraint can never be satisfied, no matter how the remaining
variables are set, so this node can be eliminated as “impossible”. For example, consider the
constraint -4x1 - 5x2 + 2x3 + 2x4 – 3x5 ≥ 1. Suppose that both x1 and x2 have already been set to 1,
while the remaining variables have not yet been set. The largest possible left hand side results if
x3 and x4 are set to 1 while x5 is set to 0, giving a left hand side value of (-9) + (4) = -5, which is
not ≥ 1, hence the partial solution (1,1,?,?,?) cannot ever yield a feasible solution, so the node is
fathomed as “impossible”.

Balas Additive Algorithm uses depth-first node selection. It is of course possible to replace this
by another by another node selection strategy, such as best-first, but if you do so then you are no
longer following Balas’ algorithm, strictly speaking. If your problem formulation states that you
are using the Balas algorithm, then you must use depth-first node selection.

Consider the following example:

 Minimize Z = 3x1 + 5x2 + 6x3 + 9x4 + 10x5 + 10x6

 Subject to: (1) -2x1 + 6x2 – 3x3 + 4x4 + x5 – 2x6 ≥ 2

Practical Optimization: a Gentle Introduction John W. Chinneck, 2004
http://www.sce.carleton.ca/faculty/chinneck/po.html

3

(2) -5x1 – 3x2 + x3 + 3x4 – 2x5 + x6 ≥ -2

(3) 5x1 – x2 + 4x3 – 2x4 + 2x5 – x6 ≥ 3

and xj binary for j=1,2…6

Note that the variables are already ordered as required by Balas’ algorithm. There are 26 = 64
possible solutions if they are all enumerated, but we expect that Balas’ algorithm will generate
far fewer full and partial solutions. The branch and bound tree develops as shown in the
following diagrams. Figure 1 shows the root node, which has an objective function value of 0
and is infeasible by constraints 1 and 3, hence it must be expanded. From here on, each node is
labelled with the bounding function value, and an indication of status for the current solution that
the node represents (note that this is not the same as the bounding function solution for zero
nodes). “Inf” indicates that the node is currently infeasible and “Imp” indicates that the node has
been fathomed and found to be impossible to satisfy; each of these notations is followed by an
indication of which constraints are causing infeasibility or impossibility.

Figure 2 shows the branching on x1, the first variable. Notice that if x1 is set to 1, then the
bounding function assumes that we will not have to set

any more variables
to 1, hence the
bounding function
value is 3, since c1 =
3. However, if x1 is
set to 0, then at least
one more variable

must be set to 1, and the bounding function assumes
that the cheapest variable, x2, the next variable in the
ordered list, is the one that will be set to 1, hence the
bounding function value is 5 because c2 = 5. The bounding function does not yield a feasible
solution at either node.

There are still live bud nodes on the developing branch and bound tree, so we choose the next
node to expand, via the depth-first rule.
Here we have just the two nodes to choose
from, and since this is a minimization
problem, we choose the node having the
smallest value of the bounding function, and
expand it using the next variable in the list,
x2. This is shown in Figure 3. Note that
node (1,1,?,?,?,?) is impossible by constraint
2. Once x1 and x2 are set to 1, no matter
how the remaining variables are set, the left
hand side will never be greater than -2

Now we select the next node for expansion.

All solns
0
inf: 1,3

Figure 1: Root node.

All solns

0

1

5
inf: 2, 3

3
inf: 1,2

x1

Figure 2: First branching.

all solns

0

1

x1

0 9
inf: 1,2

8
imp: 2

5
inf: 2,3

1

Practical Optimization: a Gentle Introduction John W. Chinneck, 2004
http://www.sce.carleton.ca/faculty/chinneck/po.html

4

Since we are using depth-first node selection, we are left only a single bud node to choose:
(1,0,?,?,?,?), with a bounding function value of 9. Best-first node selection would have chosen
node (0,?,?,?,?,?) because it has a lower bounding function value of 5.

The expansion of node (1,0,?,?,?,?) is shown in Figure 4. Node (1,0,0,?,?,?) is fathomed and
found to be feasible when using the bounding function solution (1,0,0,1,0,0), with an objective
function value of 12. This is our first incumbent solution. Node (1,0,1,?,?,?) is found to be
impossible by constraint 1.

At this point, both of the
nodes just created are not
eligible for further
expansion, so we back up
the tree, looking for a level
at which one of the nodes is
unexplored. Figure 5
shows that the next
branching occurs at the
node (0,?,?,?,?,?).

Both child nodes are
infeasible, but not
impossible. The node

having the lowest
bounding function
value is chosen for
further branching,
as shown in Figure
6.

The new zero node
created has a
bounding function
value of 14, worse
than the incumbent,
so it is pruned

immediately,
without bothering to
check feasibility or
impossibility. The
new one node is
feasible, and the

associated solution (0,1,1,0,0,0) has an objective function value of 11. This is lower than the
previous incumbent, so it becomes the new incumbent, and the node associated with the previous
incumbent is pruned. There is still a live node that has a promising value of the bounding
function: (0,0,?,?,?,?), so this node is expanded next, as shown in Figure 7.

all solns

0

1

x1

0

5
inf: 1,3

1

x2

1

12
feasible

0

9
imp: 1

x3
0
inf: 1,3

Figure 4: Third branching.

all solns

0

1

x1

0

1

x2

1

12
feasible

0

0

1 5
inf: 2,3

6
inf: 1,3

Figure 5: Fourth branching.

Practical Optimization: a Gentle Introduction John W. Chinneck, 2004
http://www.sce.carleton.ca/faculty/chinneck/po.html

5

There is again just one
node to expand:
(0,0,1,?,?,?), as shown
in Figure 8. Both child
nodes have bounding
function values that are
worse than the
objective function
value of the incumbent,
and so are pruned.

There are no more bud
nodes, so the branch
and bound solution is
complete and the
incumbent solution is
the optimum:
(0,1,1,0,0,0) with an
objective function
value of 11.

all solns

0

1

x1

0

1

x2

1

0
x3 0

inf: 1,3

0

1

6
inf: 1,3

0

1

14

11
feasible

Figure 6: Fifth branching.

all solns

0

1

x1

0

1

x2

1

0

x3

0

1

0

1

6
inf: 1

11

9
imp: 3

0

1

Figure 7: Sixth branching.

Practical Optimization: a Gentle Introduction John W. Chinneck, 2004
http://www.sce.carleton.ca/faculty/chinneck/po.html

6

Note that we examined
15 nodes in total,
including the root node.
So we did 15/64 = 23%
of the work as
compared to a full
enumeration. This is a
good reduction of
effort, but we should
expect to see much
more dramatic speed-
ups on larger problems
where early pruning
cuts off branch that
could have had
numerous descendants.

Balas algorithm is just one way of dealing with binary problems. More general methods can also
be used, such as the techniques for mixed-integer programming that we will explore next.

Mixed-Integer Linear Programming

A mixed-integer programming (MIP) problem results when some of the variables in your model
are real-valued (can take on fractional values) and some of the variables are integer-valued. The
model is therefore “mixed”. When the objective function and constraints are all linear in form,
then it is a mixed-integer linear program (MILP). In common parlance, MIP is often taken to
mean MILP, though mixed-integer nonlinear programs (MINLP) also occur, and are much
harder to solve. As you will see later, MILP techniques are effective not only for mixed
problems, but also for pure-integer problems, pure-binary problems, or in fact any combination
of real-, integer-, and binary-valued variables.

Mixed-integer programs often arise in the context of what would otherwise seem to be a linear
program. However, as we saw in the previous chapter, it simply doesn’t work to treat the integer
variable as real, solve the LP, then round the integer variable to the nearest integer value. Let’s
take a look at how integer variables arise in an LP context.

Either/Or Constraints

Either/or constraints arise when we have a choice between two constraints, only one of which
has to hold. For example, the metal finishing machine production limit in the Acme Bicycle
Company linear programming model is x1 + x2 ≤ 4. Suppose we have a choice between using
that original metal finishing machine, or a second one that has the associated constraint x1 + 1.5x2
≤ 6. We can use either the original machine or the second one, but not both. How do we model
this situation?

An important clue lies in observing what happens if you add a large positive number (call it M)
to the right hand side of a ≤ constraint, e.g. x1 + x2 ≤ 4 + M. This now says x1 + x2 ≤ “very big

all solns

0

1

x1

0

1

x2

1

0

x3

0

1

0

1

16

11

0

1

1

0

15

Figure 8: Seventh branching.

Practical Optimization: a Gentle Introduction John W. Chinneck, 2004
http://www.sce.carleton.ca/faculty/chinneck/po.html

7

number”, so any values of x1 and x2 will satisfy this constraint. In other words, the constraint is
eliminated. So what we want in our either/or example is the following:

x1 + x2 ≤ 4 ← only this constraint holds either
x1 + 1.5x2 ≤ 6 + M
x1 + x2 ≤ 4 + M or
x1 + 1.5x2 ≤ 6 ← only this constraint holds

We can achieve an equivalent effect by introducing a single binary variable (call it y), and using
it in two constraints, both of which are included in the model, as follows:

(1) x1 + x2 ≤ 4 + My

(2) x1 + 1.5x2 ≤ 6 + M(1-y)

Now if y = 0 then only constraint (1) holds, and if y = 1 then only constraint (2) holds, exactly
the kind of either/or behaviour we wanted. The downside, of course, is that a linear program has
been converted to a mixed-integer program that is harder to solve.

k out of N Constraints Must Hold

This is a generalization of the either/or situation described above. For example, we may want
any 3 out of 5 constraints to hold. This is handled by introducing N binary variables, y1...yN, one
for each constraint, as follows:

f1(x) ≤ b1 + My1

…

fN(x) ≤ bN + MyN

and including the following additional constraint:

 kNy
N

i i −=∑ =1

This final constraint works as follows: since we want k constraints to hold, there must be N-k
constraints that don’t hold, so this constraints insures that N-k of the binary variables take the
value 1 so that associated M values are turned on, thereby eliminating the constraint.

Functions Having N Discrete Values

Sometimes you have a resource that is available in only certain discrete sizes. For example, the
metal finishing machine may have 3 settings: x1 + x2 ≤ 4 or 6 or 8. This can be handled by
introducing one binary variable for each of the right hand side values. Where there are N
discrete right hand sides, the model becomes:

 ∑ =
=

N

i ii ybf
1

)(x and ∑ =
=

N

i iy
1

1

This assures that exactly one of the right hand side values is chosen. In the metal finishing
machine example, the model would be:

Practical Optimization: a Gentle Introduction John W. Chinneck, 2004
http://www.sce.carleton.ca/faculty/chinneck/po.html

8

x1 + x2 ≤ 4y1 + 6y2 + 8y3

y1 + y2 + y3 =1

and y1, y2, y3 binary.

Fixed Charges and Set-up Costs

Fixed charges or set-up costs are incurred when there is some kind of fixed initial cost associated
with the use of any amount of a variable, even a tiny amount. For example, if you wish to use
any amount at all of a new type of metal finishing for the ABC Company, then you incur a one-
time set-up cost for buying and installing the required new equipment. Fixed charges and set-up
costs occur frequently in practice, so it is important to be able to model them.

Mathematically speaking, a set-up charge is modelled as follows:

0 if xj = 0 f(xj) =  K + cjx j if x j > 0

where K is the fixed charge. This says that there are no charges at all if the resource represented
by xj is not used, but if it is used, then we incur both the fixed charge K and the usual charges
associated with the use of x j, represented by c jxj.

The objective function must also be modified. It becomes:

 minimize Z = f(xj) + (rest of objective function)

Note the minimization: set-up costs are only interesting in the cost-minimization context. If it is
cost-maximization (a strange concept…) then we would of course always incur the set-up cost by
insuring that every resource was always used.

The final model introduces a binary variable y that determines whether or not the set-up charge is
incurred:

Minimize Z = [Ky + c jx j] + (rest of objective function)

subject to: xj – My ≤ 0
 other constraints
 y binary

This behaves as follows. If xj ≥ 0, then the first constraint insures that y = 1, so that the fixed
charge in the objective function is properly applied. However, if xj = 0, then y could be 0 or 1:
the first constraint is not restrictive enough in this sense. We want y to be zero in this case so
that the set-up cost is not unfairly applied, and something in the model actually does influence y
to be zero. Can you see what it is? It is the minimization objective. Given the free choice in this
case between incurring a set-up cost or not, the minimization objective will obviously choose not
to. Hence we have exactly the behaviour that we wish to model. Once again, though, we have
converted a linear program to a mixed-integer linear program.

Practical Optimization: a Gentle Introduction John W. Chinneck, 2004
http://www.sce.carleton.ca/faculty/chinneck/po.html

9

Dakin’s Algorithm for Solving Mixed-Integer Linear Programs

Now that we’ve seen how integer or binary variables can enter linear programs, we need a
method for solving the resulting mixed-integer problems. Because of the integer or binary
variables, we will need to use some kind of branch and bound approach. Dakin’s algorithm is a
branch and bound method that uses an interesting bounding function: it simply ignores the
integer restrictions and solves the model as though all of the variables were real-valued! This
LP-relaxation provides an excellent bound on the best objective function value obtainable, and
sometimes results in a feasible solution when all of the integer variables actually get integer
values in the LP solution.

The second aspect of Dakin’s algorithm is the branching. As a node is expanded, two child
nodes are created in which new variable bounds are added to the problem. We first identify the
candidate variables: those integer variables that did not get integer values in the LP-relaxation
solution associated with the node. One of these candidate variables is chosen for branching.
Let’s consider candidate variable xj that has a non-integer value between the next smaller integer
k and the next larger integer k+1. The branching then creates two child nodes:

• the parent node LP plus the new variable bound x j ≤ k
• the parent node LP plus the new variable bound x j ≥ k+1

For example, consider some candidate variable xj that has the value 5.761. One child node will
consist of the parent LP plus the new variable bound xj ≤ 5 and the other child node will consist
of the parent LP plus the new variable bound xj ≥ 6. These new nodes force xj away from its
current non-integer value. There is no guarantee that it will get an integer value in the next LP-
relaxation, however.

Fathoming is simple. If the LP-relaxation at a node assigns integer values to all integer
variables, then the solution is feasible, and is the best that can be attained by further expansion of
that node. The solution value is then compared to the incumbent and replaces the incumbent if it
is better. If the LP-relaxation is infeasible, then the node and all of its descendents are infeasible,
and it can be pruned.

Node selection is normally depth-first. This is because a child node is exactly the same as the
parent node, except for one changed variable bound. This means that the LP basis from the
parent node LP-relaxation solution can be used as a hot start for the child node LP-relaxation. Of
course the parent node solution will definitely be infeasible in the child node, but a dual simplex
restart can be used and will very quickly iterate to a new optimum solution. This is much more
efficient than, say, best-first node selection, which would require restarting LPs from scratch at
most iterations.

Let’s look at a small example that appears in a textbook by Winston (Mathematical
Programming, 1991, p. 489):

Maximize Z = 8x1 + 5x2
s.t. x1 + x2 ≤ 6
 9x1 + 5x2 ≤ 45
 x1, x2 are integer and nonnegative.

Practical Optimization: a Gentle Introduction John W. Chinneck, 2004
http://www.sce.carleton.ca/faculty/chinneck/po.html

10

A graph of this problem is shown in Figure 9. The initial
LP relaxation is created when the original model, shown
above, is simply treated as an LP and solved. The LP-
optimum occurs at (3.75,2.25) with Z = 41.25. However
this is not integer-optimum since both integer variables
have taken on fractional values, so we must develop a
branch and bound tree following Dakin’s algorithm.

This branch and bound tree develops as shown in Figure
10. Small sketches of the feasible region for some of the
LP-relaxations are also shown on the diagram. Note how
the new variable bounds gradually “square off” the LP-
relaxation feasible regions until solutions are found in
which both of the integer variables indeed have integer
values.

Each node in Figure 10 represents the solution of an LP-
relaxation. The order of the solutions is given by the

circled numbers. An incumbent solution of (3,3) with Z = 39 is obtained early, at the second LP
solution. However there are other promising nodes with better bounding function values, so the
tree development continues. A better incumbent is eventually found: node 7 with a solution of
(5,0) and Z = 40. At this point, all other nodes are pruned and the solution process halts. Note
how far the final solution of (5,0) is from the initial LP-relaxation solution of (3.75,2.25): you
can’t get to the final solution by rounding!

You will not need to set up the MILP branch and bound tree manually in practice. Most
commercial LP solvers will accept integer or binary restrictions on variables as part of their
input. They then take care of setting up the branch and bound tree automatically. As you can
imagine though, MILP solutions generally take a lot longer than identical LP solutions!

9

6

5 6

feasible
region

optimum of
initial LP
relaxation

x1

x2

Figure 9: Initial LP relaxation.

Practical Optimization: a Gentle Introduction John W. Chinneck, 2004
http://www.sce.carleton.ca/faculty/chinneck/po.html

11

Figure 10: Branch and bound tree for Dakin's algorithm.

